Lesson Plan (Session 2024-25 (Odd Semester))

(July 2024 to November 2024)

Name: Dr. Dharmvir Singh Vashisth Department: Mathematics Subject: Functions and Algebra Class : B.Sc. 1st Sem(Non-Medical)

Month	Topics to be covered	Assignment/ Test
July	Relations, Functions along with domain and range, Composition of functions, Invertibility and inverse of functions, One-to-one correspondence and the cardinality of a set.	
August	Relations between the roots and coefficients of general polynomial equation in one variable. Solutions of polynomial equations having conditions on roots. Common roots and multiple roots. Transformation of equations. Nature of the roots of an equation Descarte's rule of signs. Solutions of cubic equations (Cardon's method). Biquadratic equations and their solutions.	Assignment – I
September	Matrix and its types. Symmetric, Skew-symmetric,	Test Unit -I
	Hermitian and Skew Hermitian matrices. Unitary and	
	Orthogonal Matrices, Idempotent, Involuntary, Nilpotent	
	Matrices.	
	Pank of a Matrix & its applications Pank of a matrices	
	Row rank and column rank of a matrix Elementary	
	Operations on matrices Inverse of a matrix, Normal Form	
	PAO Form Linear dependence and independence of rows and	
	columns of matrices. Applications of matrices to a system of	
	linear (both homogeneous and non-homogeneous) equations	
	Theorems on consistency of a system of linear equations.	
October	Rank of a Matrix & its applications. Rank of a matrices, Row rank and column rank of a matrix, Elementary Operations on matrices, Inverse of a matrix , Normal Form, PAQ Form, Linear dependence and independence of rows and columns of matrices , Applications of matrices to a system of linear (both homogeneous and non-homogeneous) equations, Theorems on consistency of a system of linear equations.	Assignment – II
November	Cayley Hamilton theorem. Eigenvalues, eigenvectors and the characteristic equation of a matrix. Minimal polynomial of a matrix. Cayley Hamilton theorem and its use in finding the inverse of a matrix. Diagonalization of matrix.	Test Unit II

Lesson Plan (Session 2024-25 (Odd Semester)) (July 2024 to November 2024)

Name: Dr. Dharmvir Singh Vashisth Department: Mathematics Subject: Practical on course Functions and Algebra Class : B.Sc. 1st Sem

Month	Topics to be covered	Assignment/ Test
July	 Matrix operations (addition, multiplication, inverse, transpose, determinant, rank, eigenvectors, eigenvalues, Characteristic equation and verification of Cayley Hamilton equation, system of linear equations) 	
August	 Practical based on System of Homogenous Equation and application to solve balance chemical equation. Practical based on System of Non- Homogenous Equation and applications to solve network flow problems, Nutrition and Economic Input-Output Models. Problems based Markov process a type of Mathematical Modeling . 	Assignment – I
September	 Applications and Uses of Matrix in Coding theory. Study of reflection, shear, dilation, contraction of figure using matrix transformation as application of computer graphics. Application of System of Equations to Solve Electric Circuits. Applications of Eigen values to solve a Diffusion Process and Dynamical Systems. Plotting of graphs of following functions (i) y = ^t/₂ⁿ, Rational function (ii) f(x) = ¹/_{xⁿ} Irrational function (iii) f(x) = x^{1/n} where n ∈ N (discuss both cases on n is even or odd) (iv) Piecewise Function (Modulus function, Signum function, Greatest integer function, Fractional part function, Least integer function). 	Test Unit -I
October	1. Plotting of graphs of following transcendental and standard functions (i) Sin(x), Cos(x), Tan(x), Cot(x), Sec(x), Cosec(x), $e^x, a^x(a > 1, a < 1), log_a(x)$ (a>1, a<1) and Standard Geometrical functions (i)	Assignment – II

	Straight Line (ii) Circle (iii) Parabola (iv) Ellipse (v)	
	Hyperbola.	
	2. (i) Plotting of graphs of six inverse trigonometric	
	functions and hyperbolic functions (ii) Solution of	
	Transcendental equation using graph for example	
	$sinx = \frac{x}{10}$, $cos(x)=x$ (iii) Plotting of graphs of functions	
	$sin^{-1}(sinx), sin(sin^{-1}x).$	
	Study of various graphical transformations by which $f(x)$ transform to $f(x) \neq a$, $f(x \neq a)$, af(x), f(ax), f(x) , f(x), f(x) , y = f(x), y = f(x) , y = f(x) , y = [f(x)], y = f([x]), y = [f([x])].	
November	Revision	Test Unit II

Signature:

Lesson Plan (Session 2024-25 (Odd Semester)) (July 2024 to November 2024)

Name: Dr. Dharmvir Singh Vashisth Department: Mathematics Subject: Advanced Calculus Class : B.Sc. 3rd Sem

Month	Topics to be covered	Assignment/ Test
July	Continuity, Sequential Continuity, properties of continuous functions, Uniform continuity,	
August	Chain rule of differentiability. Mean value theorems; Rolle's Theorem and Lagrange's mean value theorem and their geometrical interpretations. Taylor's Theorem with various forms of remainders, Darboux intermediate value theorem for derivatives, Indeterminate forms.	Assignment – I
September	Limit and continuity of real valued functions of two variables. Partial differentiation. Total Differentials; Composite functions & implicit functions. Change of variables. Homogenous functions & Euler's theorem on homogeneous functions. Taylor's theorem for functions of two variables.	Test Unit -I
October	Differentiability of real valued functions of two variables. Schwarz and Young's theorem. Implicit function theorem. Maxima, Minima and saddle points of two variables. Lagrange's method of multipliers.	Assignment – II
November	Curves: Tangents, Principal normals, Binormals, Serret-Frenet formulae. Locus of the centre of curvature, Spherical curvature, Locus of centre of Spherical curvature, Involutes, evolutes, Bertrand Curves. Surfaces: Tangent planes, one parameter family of surfaces. Envelopes.	Test Unit II

Signature:

Lesson Plan (Session 2024-25 (Odd Semester)) (July 2024 to November 2024)

Name: Dr. Dharmvir Singh Vashisth Department: Mathematics Subject: Real Analysis Class : B.Sc. 5th Sem

Month	Topics to be covered	Assignment/ Test
July	Riemann integral	
August	Integrability of continuous and monotonic functions, The Fundamental theorem of integral calculus. Mean value theorems of integral calculus.	Assignment – I
September	Improper integrals and their convergence, Comparison tests, Abel's and Dirichlet's tests, Frullani's integral, Integral as a function of a parameter. Continuity, Differentiability and integrability of an integral of a function of a parameter.	Test Unit -I
October	Definition and examples of metric spaces, neighbourhoods, limit points, interior points, open and closed sets, closure and interior, boundary points, subspace of a metric space, equivalent metrics, Cauchy sequences, completeness, Cantor's intersection theorem, Baire's category theorem, contraction Principle	Assignment – II
November	Continuous functions, uniform continuity, compactness for metric spaces, sequential compactness, Bolzano-Weierstrass property, total boundedness, finite intersection property, continuity in relation with compactness, connectedness , components, continuity in relation with connectedness.	Test Unit II

Lesson Plan (Session 2024-25 (Odd Semester))

(July 2024 to November 2024)

Name: Dr. Dharmvir Singh Vashisth Department: Mathematics Subject: Multidisciplinary Coursein Mathematics

Class : B.A. 1st Sem

Month	Topics to be covered	Assignment/ Test
July	Numbers, H.C.F. and L.C.M. of Numbers,	
August	Decimal and Fractions, Simplification, Square roots and cube roots, Surds and indices.	Assignment – I
September	Problems on numbers, Average, Percentage, Profit and Loss, Ratio and proportion.	Test Unit -l
October	Problem on ages, Partnership, Time and work, Time and distance.	Assignment – II
November	Problems on trains, Mixure problem, Problems based on Calendar and clock.	Test Unit II

Signature: